RAGCHEW

JANUARY 2019

HAPPY NEW YEAR!

FROM THE EDITOR - G4CIB

May | take this opportunity to wish all members of
GARES a Happy New Year and a Healthy and
Prosperous 2019.

On 9t January 1969 | turned up at the “Lamb Inn”
by the entrance of Kings Square for a meeting of
the then Gloucester Amateur Radio Society. The
little “signing in” book does not record the meeting
details and time has dimmed my memory!

| had first become aware of Amateur Radio in the
late 1950s when | listened to the 40m band on my
father’'s radiogram. CW and AM (amplitude
modulation) were the modes of choice, with the
occasional SSB (single sideband) station. When |
left school | went to what was then Rugby College
of Engineering Technology to study electrical
engineering. The college had an amateur radio
station with its own call sign - G3VWI - and my
interest was rekindled which resulted in me taking
the City and Guilds Radio Amateurs Exam (RAE)
in the summer of 1968 just before | left college. To
get a Class A call sign enabling you to operate on
the HF bands, a pass in the RAE and a 12wpm
Morse test was mandatory, but a Class B licence
was available with the RAE pass. The lowest
frequency available, however, was 432MHz (70cm)
and with no commercially available equipment, this
was definitely an experimenters band. Around this
time the rules were relaxed allowing Class B
licence holders access to the 144MHz (2m) band.
Returning to Gloucester | started a Graduate
Apprenticeship at Smiths Industries in Bishop’s
Cleeve in the autumn of 1968 and amateur radio
was again put on the “back-burner”. Once again
my memory is hazy how | found out about the
GARS meetings at the “Lamb Inn” and | seem to
remember that | only attended a few meetings
there before the club moved to the RAFA (Royal
Air Force Association) Club in Spa Road as the
whole of Kings Square and the surrounding area
was being razed to the ground for redevelopment.

The technical advances in our hobby have been
enormous during the 50 years | have been a
member of the club and the opportunities for
experimentation continue to expand exponentially.
Member John Rowing MONRZ has submitted an
article on the development of a CI-V (remote)
interface for his IC7300. Light years away from the
technology available when | joined the club 50
years ago!

73 and good DX!
Brian G4CIB

New Year - New Challenges

How about trying something new in 20197? In the
spirit of self training how about trying a new mode?
Perhaps you have always run high power? How
about trying some QRP? Whatever new challenge
you take on, how about writing an article for
‘Ragchew”™? Email your article to me at
g4cib@outlook.com

A New 2m Beacon

Many thanks to Dave G4BCA for alerting me to a
new 2 metre beacon GB3SEV on 144.432MHz,
located at 1082Ul, Stourport-on-Severn. The
antenna is a 4 element yagi but at the time of
writing this | am not sure of the beam heading. The
licence holder is well-known 2m UKAC contester
MOVXX.

Heathkit Now Becoming Collectable!

A few weeks ago | was casually browsing on ebay
for nothing in particular when | came across some
Heathkit items. Further investigation revealed that
many of their products have become sought after
and are fetching serious money!

A further search and | discovered the following web
sites:-

https://shop.heathkit.com/shop
http://heathkit.glosnet.com/

Development of a ClI-V (Remote)
Interface for the Ilcom IC-7300

By John Rowing MONRZ

This is a commentary on a work in progress using
an Arduino Mega 2560, an Ethernet Shield, a
prototyping shield and a handful of low cost
components. The Arduino IDE used to program the
device is available for free download at
www.arduino.cc but once you master it, | suggest
that it's worth making a small donation to the
Arduino site to ensure that the IDE can continue to
be developed. There are also some very good
tutorials on You-Tube : | recommend the ones by
Jeremy Blum.

Also take alook at Processing.org for development
of ‘sister’ apps to run on your PC or Mac.

https://shop.heathkit.com/shop

¢

Evolution of a multi-purpose Arduino based CI-V interface

Back in the summer of 2016, | began
the process of becoming a licensed
radio amateur. It turned out to be a
very fortunate starting point as the
ICOM 7300 had just become available
in the UK, so | bought one.

| do like my rig, and it fits neatly into
the fairly small space which is barely
worthy of the name ‘shack’, let’s just
say it’s ‘cosy’, tucked into a remote
corner of the house.

After a few 100 or so hours of listening,
occasionally calling CQ and a few brief
QS0’s | began to think that maybe |
should have bought a bigger radio.

To be specific, | would have liked a few
more buttons on the front panel, to
give me direct access to the mode
selections and of course direct access
to the 20m, 40m, 80m bands.

| do like my radio, but | don’t like
multi-layer ‘soft buttons’.

icom "o

| did a little more reading of the
manuals, and discovered the huge
potential offered by the CI-V (remote)
interface. It seemed like just about
every internal function of the 7300 can
be interrogated or set via this
interface. And to my great delight
setting the band, modes and VFO
frequency are just a few bytes away.

The plan :

1. create a device which has a
hardware CI-V interface for
direct connection into the
REMOTE (‘one wire bus’) port.

2. write the software (C++) to send
specific short strings of bytes to
the radio via the CI-V interface.

3. Assemble a few buttons (on a
panel) to sit adjacent to the
radio that are scanned by my
software too.

| started working on the project late in
2016, but other things cropped up
which needed my attention.

One day perhaps | will recreate
something like this panel to go
alongside my 7300.

| should mention that | did also
purchase the icom RS-BA1 software
together with the RC-28 remote dial.
| kind of got it to work, but | think
there were some issues with the early
versions of the software; | am NOT a
great fan of MS Windows. The RS-BA1
is quite impressive and can be a real
joy when it works, but | think my PC’s
don’t always play ball.

| was however inspired by it to attempt
to make something which might be a
little more robust, and perhaps add a
few functions.

7.062.000

I’m not going to describe much detail
of the CI-V message structure as there
are several documents available which
do precisely that. But a word or two
about the ‘one wire bus’ are necessary
to understand some of the contents of
this document.

First, being pedantic it’s actually two
conductors, one is at CHASSIS potential
(notionally GROUND), the other is the
single wire on which all data will be
carried to all connected devices.

There are similarities to ETHERNET
(10BASE2) computer networking in the
1980’s. Does anyone remember using
BNC ‘T-pieces’, RG-58 coax and 50
ohm terminators to play Collaborative
or DeathMatch DOOM in the office ?

On a network configuration like this,
all devices ‘listen’ for traffic, and
ideally only one device ‘speaks’ at a
time.

Like ethernet, the icom CI-V protocol
has mechanisms to handle data
collisions.

In the idle state (i.e. most of the time)
the CI-V data line is at a LOGIC 1 state,
a potential of about +3v above ground.
The magic happens when this line is
pulled down to a LOGIC 0 (a potential
of about GND) by any connected
device.

i ol IR S R e a0 S ML 3y

Data from a radio can be requested
from another device (the request
includes the address of both the
originator and destination), OR data
can be broadcast to the bus for any
device to act on or ignore.

| noticed that when | change mode or
alter the VCO on my R8600 it outputs a
short message of about 10 bytes, the
source address is it’s own id (°0 -
hexadecimal) but the destination
address is 00 which | assume is the
equivalent of “broadcast” i.e. any
device can accept. There is a wealth
of information in the ICOM CI-V
manuals but | didn’t spot this detail.

| connected my 7300 to the 8600 using
the remote ports 3.5mm jack to jack,
if | change the VCO on either radio,
they both change frequency
simultaneously. Similarly, when |
change from for example LSB to AM -
both devices stay in sync. | haven’t
actually looked at the traffic - more on
that later perhaps.

Getting back into the detail, as your
device transmits data to the ‘one wire
bus’ it must simultaneously read back
each bit and byte on the ‘bus’, and
check that what was r=ad is identical
to what was sent, If it isn’t, then
another device probably sent some
data during ‘your transmission’ and all
or part of your (and their) transmitted
data was corrupted.

Short VCO change message example

HEXADECIMAL
FE FE 00 °6 00 20 50 55 00 FD

254 254 000 150 000 032 080 085 000 253
DECIMAL

Note :

In the Connectors section of the Function
menu, the C1-V Tranceive function needs to be
ON for this to work.

The default condition in both the 7300 and the
8600 is O

Fast forward to September 2018, and the project restarted.

| had decided to use an Arduino Mega 2560 as the platform for Task 2 (and despite
it having 5v logic), | thought that by using a couple of opto-isolators (that | had in
stock) | might resolve the physical connection mis-match as the ‘one wire bus’ uses
3.3v logic.

—— %

During my initial testing | sent a few ASCII characters out of pin18(TX1) to drive
the opto-isolator. It is possible to either source or sink current via the Arduino’s
pins... | chose to have a LOGIC 1 light the internal LED. That turns on the internal
transistor and ‘grounds’ pin 5 - a LOGIC 0 at the collector is inverted (becomes a
LOGIC 1) and is fed into the Arduino’s pin17(RX2).

| could simultaneously send and receive ASCII characters, but at 9600 baud | saw
errors passing through the opto-isolator. Digging deeper, my oscilloscope revealed
that the rising edges of the output (on the transistors collector) were profoundly
rounded. At low baud rates the data appeared to be ok, but as the bit duration
decreased errors occurred. Note : in fig 1 the yellow trace is the input signal, but
in fig 2 & 3 the magenta trace is the input signal.

Fig.1 Fig.2 Fig.3

| did try various modifications to the previous circuit, but eventually abandoned it
in favour of using this circuit which is very similar to that inside the ICOM 7300. In
the text and diagrams below | have provided a fairly thorough (and lengthy)

description of what occurs to aid anyone who is not familiar with this sort of stuff.

P s S
R1 -
Cl-v i A g _AMMA MMM
€W -
D1 @ i - S
& ~ R? hs
L 4 e i —
RS
% Q3 | a8 ax _.i
- 2 T) w
R4 g
'. R2 i -
177 el u1
: 3 % EN . GND
{ _ | From Arduino Pin18 TX €—

LTuld ouinpiy o)

o
-

3

MADE
INITALY - >
e ~

use
to computer

7012V
DC input,

center
positive

Y | Bk b R W W W W W
o . oy WA AR

+5v

+3.3v

Arduino essentials: the board has many |/0 pins. Some also have special functions.
Most pins can be set (by code) to be IN or OUT, the code which runs is used to
READ or SET the logic state of most of the pins, and make decisions. That might
sound scary - it isn’t, and it unleashes your imagination too.

In the IDLE state (below) I’ve left some component ID’s off to reduce the clutter.

The ‘TX’ line on the RHS is connected to the Arduino pin18. When idle, itisat a
LOGIC 1 - which is inverted by U1, so that a LOGIC 0 is applied to the base of Q1,
which is biased off. This allows the CI-V line to be pulled (wa D1) up to about +3v.

$ e 433V
N | < X +5v
® -
— = -
GND e IR
off | (R At—il,
Wy
a1 Fut w
| e Jf g N ! —— - i
+5v
- * | lIdle
- T g

At the same time transistor Q2 is ‘off’, the base of Q3 is pulled to GND so it’s also
‘off’ too. The collector of Q3 is pulled ‘high’ (up to about +3.3v), Q4 base voltage
is thus higher than it’s emitter biasing Q4 on, and taking it’s collector low (near
GND potential) - U2 inverts that to produce a LOGIC 1 at the RX line which is
connected to the Arduino pini7. |

\ - 433V
““\
k.
o e AN &
| e L
_ £ ‘off |= =
. &Y Vonidatre 1.
- S IAMA_EER g . s e - x| T
GND Y\ (AR P
+3v < 1% 18)\ w \
| ‘off | —=las \ \.
| ‘on’ X A
‘off |CGH—\Whay C|ov +5v
e e S - | S | : . ; ; GND
- Idle

N S : 5 N i

If the Arduino pin 18 and the TX line goes to a LOGIC 0 (i.e. a ‘0’ bit is being
output from the Arduino), U1 inverts it, and turns Q1 on which ‘grounds’ the CI-V
line... this causes a small current to flow through R3 which develops a potential
difference between the base and emitter of Q2... enough to turn it on.

The voltage at the base of Q3 rises, turning Q3 on, pulling it’s collector low (near
to ground potential).

Q4 turns off and it’s collector is pulled towards the +5v rail.
Finally, the inverter outputs a LOGIC 0 to feed Pin17 of the Arduino.
This is how change of state of the CI-V line cause by transmitted data from the

Arduino is fed back through D1, Q2, Q3, Q4 and U2 to the RX line : this enables
what is SENT to be READ and VERIFIED.

e ———— +3.3v
O . €¢— +~AMAL ‘on’ ‘o
g = - '__. Pl
- < T
GND | oV AL L = ‘0is
= o’ | e Replicated
Here !
‘on’ ‘“*___ Moz At ‘off
& a d
a1 [wn
. S———) - . . . GND
far
1 ‘
o
. - @

sent

If another device on the CI-V line pulls the line low - to a LOGIC 0, just like the
description above...a small current through R3 develops a potential difference
between the base and emitter of Q2 which turns it on... and via Q3, Q4 and U2 a
LOGIC 0 is passed to Pin18 of the Arduino.

‘_ R _'_ahsv
@V v 4 VYV VW l
‘o ~ = - Sl : Jores +5v
RX'd S— — T . =
‘on’ | AW - N o
.) | s RX
GND . = Q3 LE & RX'd
- - uz
= ‘o’ |
~ P ‘off
+— s e e I
T TR S e T " X Ed!e
1

With this circuit, | was able to connect my R8600 to an Arduino, and READ data
sent from the radio. It can also send data to the radio ! - job done.

The circuit was assembled on an Arduino ‘proto-typing’ board (an additional
stacked board is called a ‘shield’). | also added a ‘network shield’ which provides

an ethernet RJ45 port and networking chipset. That allows even more potential
for connectivity and control.

My CI-V device

—— Proto Shield

Network Shield

. Arduino
Mega2560

Task 2 : write the software to interact
with the CI-V interface

The programming language is more or
less C++, | am NOT an expert! although
| have been learning and using C and
more recently C++ as part of my
electronic hobby for about 3 decades.

The language allows the creation of re-
usable chunks of code called
functions, and better still there are
‘code objects’ that help to keep the
whole project in a manageable state.

Anyone can write code, but | think the
art of good code creation is to produce
stuff that can be revisited many
months or years later, and can be
relatively easily understood, and
modified without too much grief.

| won’t dive too deeply into coding
detail of this task, the design principle
is that the Arduino Mega2560 will
operate in only a number of very well
defined configurations.

There are currently three high level
modes for the whole device, and
perhaps a 4" mode, and several
‘states’, some or all of which will be
used within each mode.

Mode 1 : CI-V Hardware Button Control
(physical buttons on a panel)

Mode 2 : CI-V Virtual Button Control
(virtual buttons on an ipad)

Mode 3 : CI-V to Ethernet Bridge
(CI-V to Ethernet and Ethernet to CI-V)

Mode 4 : CI-V to PROCESSING Display
Meter display on MAC or PC

The code structure looks a little like
this :

State 1 : Initialising
Run setup :
Setup {
define 1/0 pins,
set Serial Port Baud Rates,
set MAC and IP address, create
internal Objects, set variables
to known values,
set Device Mode
«owitch to State 2
then EXIT setup
}

now run Main Programme Loop.

Main loop {
Any buttons pressed ?

USB serial buffer empty ?
ETHERNET buffer empty ?
RX2 serial buffer empty ?
Is there a message to send ?

What is the device State ?

}

State 2 : Listening
If RX flag = true change to State 3

State 3 : Receiving
If ALL bytes read change to State 2.

State 4 : Lookup... not defined yet

State 5 : Sending
If ALL bytes sent change to State 6.

State 6 : Verifying

Are ‘received bytes same as sent ?.
MORE?

State 7 : Collisions ! ... not defined yet

Each of the functions called by the
Main Loop may set a FLAG to record
that something occurred, and the
flag(s) may in turn cause the device to
branch to a different state.

In device Mode 1 or 2, after receiving
the CI-V data, not much happens. It
would be possible to perform a lookup
or (as it actually does) just spit out the
received bytes to the USB port for
display on a monitor. The output can
also be sent to a 2 or 4 line LCD
module.

I’ll skip the other (more obvious
modes) and consider Mode 4. This
evolved quite recently following some
FaceBook comments regarding
‘external meter displays’.

The device | have assembled can send
a specific string of bytes to a radio to
request that it responds with for
example it’s current VCO frequency. |
can do this, it works. The question
arose : can a radio output other
‘meter’ values? ...to perhaps provide a
real time an S-meter display on a PC
screen.

This table extract indicates that it can.

| Cmd | Subomd. | Data | Deseription]

00=Close, 01=Open)

15 |o1 00/01 measmeurmm
(

02 0000 ~ 0255 |Read the S-meter level

0000=50, 0120=58, 0241=58+80dB)

0.1 steps)
BB= Plus or minus sign (00=+, 01=-)

CC= Meter type (00=dBy, 01=dBy EMF,

So in Mode 4 we might SEND a request
like FE FE 96 EO 15 02 FD

.. and receive back the current S-
meter level as a value between 0 and
255.

The request could be sent perhaps
every 500ms.

What can be done with this data ?

It can be sent to a PC or Mac via
ethernet or USB serial interface.

There is a programming language
called PROCESSING. It is very similar
to the language used to programme
Arduinos. PROCESSING can produce
executable files that runon aMAC or a
PC.

PROCESSING is very graphically
orientated, in that it is designed to
enable data to be presented visually.

| have used it to literally produce
dynamic graphs depicting

Temperature V. Time. Producing a
custom S-meter should be quite
straight forward.

This stunning image (including the Sun
spots!) is in the PROCESSING demo files
called ‘planets’. By the way it is an
animation...it has some ‘WOW’ factor.

Christmas Holiday Operating

Leta G4RHK and Brian G4CIB on Dumbleton Hill
in QSO with Anne 2E1GKY - Boxing Day.

Rig - FT817ND

Looking South from our /P operating position

Archive Photos Supplied by 2E1GKY
Club Picnic 2002

Cob Achot Prenie- Reconijot anyore? aofefo2.

| 4
R :’_,G;ct He Aummep — [ren e,

